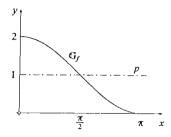
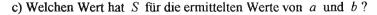
Aufgabensteller: Genzer, Herrmann, Plöchinger, Schwägerl, Vinzenz Arbeitszeit: 90 Minuten. Alle Hilfsmittel außer Rechnern sind zugelassen.

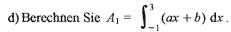
Die Ergebnisse sind auf den beiliegenden Arbeitsblättern herzuleiten und einzutragen.
Es sollen alle vier Aufgaben bearbeitet werden.

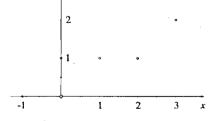
- a) Ermitteln Sie den Flächeninhalt A von $[\mathcal{B}]$ und die Koordinaten x_S, y_S des Schwerpunktes S von $[\mathcal{B}]$.
- b) [3] rotiert um die x-Achse und überstreicht dabei einen Drehkörper. Wie groß ist sein Volumen V.?
- c) [\mathcal{B}] rotiert um die y-Achse und überstreicht dabei einen Drehkörper. Wie groß ist sein Volumen V_{ν} ?
- d) Nun rotiert \mathbb{G}_f um die Gerade p mit der Gleichung y=1. Welchen Mantelflächeninhalt A_{Mp} hat die dabei überstrichene Drehfläche?



- 2. Durch $(x-C)^2 + y^2 = \frac{4}{3}C^2 + 4$ ist eine Kurvenschar mit C als Scharparameter gegeben.
 - a) Geben Sie Art und Bestimmungsstücke der Scharkurven an.
 - b) Ermitteln Sie die Hüllkurve \mathcal{H} der Schar. Geben Sie Art und Bestimmungsstücke von \mathcal{H} an. Skizzieren Sie \mathcal{H} samt den Scharkurven für C=0, $C=\pm 3$.
 - c) Welche Koordinaten haben die Berührpunkte von \mathcal{H} mit den Scharkurven in Abhängigkeit von C? Für welche Werte von C ergeben sich überhaupt Berührpunkte?
- 3. Gegeben ist die Differentialgleichung $\ddot{y} + 4\dot{y} + 3y = 8e^{-t}$.
 - a) Ermitteln Sie die allgemeine Lösung der zugehörigen homogenen Differentialgleichung.
 - b) Ermitteln Sie die allgemeine Lösung der gegebenen Differentialgleichung.
 - c) Ermitteln Sie die besondere Lösung y = f(t) der gegebenen Differentialgleichung, für die y = 1, $\dot{y} = 3$ bei t = 0 gilt.
 - d) Für welches t nimmt y = f(t) ein Maximum y_{max} an, und wie groß ist y_{max} ?
 - e) Für welches t hat G_t einen Wendepunkt?
 - f) Wie groß ist $\lim_{t\to\infty} f(t)$? Skizzieren Sie \mathbb{G}_f (Verwenden Sie dazu $e^{-0.75}\approx 0.47$).
- 4. Gegeben sind die 5 Punkte (-1,0), (0,1), (1,1), (2,1), (3,2) der (x,y)-Ebene. Hierfür soll die Gleichung y = ax + b der Ausgleichsgeraden g ermittelt werden.
 - a) Schreiben Sie die Fehlerquadratsumme S als Funktionswert von a und b an.
 - b) Welche Normalgleichungen ergeben sich? Berechnen Sie a und b und geben Sie die Gleichung von g an. Zeichnen Sie g in das gegebene Kordinatensystem ein.







- e) Die 5 Punkte werden nun als Punkte eines Graphs G_f aufgefaßt. Ermitteln Sie $A_2 = \int_{-1}^3 f(x) dx$ durch numerische Integration nach SIMPSON mit der Schrittweite h = 1.
- f) Vergleichen Sie A_2 mit A_1 . Welche geometrische Eigenschaft der Punktanordnung ist die Ursache für das Ergebnis?