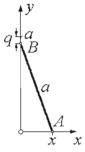
Seite 1

Aufgabensteller: Axt, Plöchinger, Schwägerl, Vinzenz

Arbeitszeit: 90 Minuten. Alle Hilfsmittel außer Rechnern sind zugelassen. Es sollen alle sieben Aufgaben bearbeitet werden.


				1. Korr.	2. Korr.		
Name:		GebD	atum:	-			
Vorname:		Aufsich	ht:	Punkte:			
Unterschrift:	<u> </u>						
StudGr.: FA	(genaue Angabe!!!)	Saal:	Platz:	Note:			
1. $r = f(\varphi) = a \cdot \frac{\varphi - 1}{\varphi}$ mit $\varphi > 1$ ist die Gleichung einer Kurve $\mathcal C$ in Polarkoordinaten. Ermitteln Sie $\lim_{\varphi \to -\infty} f(\varphi)$. Geben Sie eine Kurve $\mathcal K$ an, der sich $\mathcal C$ mit wachsendem φ immer mehr nähert, und							

Schraffieren Sie den Bereich, dessen Flächeninhalt $I=\frac{1}{2}\int_{\beta}^{\beta+2\pi}r^2\mathrm{d}r$ ist, in der Skizze für $\beta=1$. Ermitteln Sie $\lim_{\beta\to\infty}I$.

<u> </u>	а	2 a

^{2.} Durch $y = f(x) = \frac{1}{2}x^2$ mit $0 \le x \le c$ ist ein Parabelbogen \mathbb{G}_f bestimmt. Welchen Mantelflächeninhalt M hat die bei Rotation von \mathbb{G}_f um die y-Achse überstrichene Drehfläche?

3. Der Anfangspunkt A eines Stabes der Länge a ist auf der x-Achse verschiebbar, sein Endpunkt B auf der y-Achse. A wird von x=0 an eine Stelle $x \ll a$ verschoben. Setzen Sie für die Differenz $q=a-\sqrt{a^2-x^2}$, um die B dabei seine y-Koordinate ändert, eine McLAURIN-Reihe nach Potenzen von x an und brechen Sie sie nach dem Term mit x^4 ab.

- 4. Durch $z = f(x, y) = 5 x^2 + 4x 4y^2$ ist eine Fläche [F] im Raum gegeben.
 - a) Ermitteln Sie die Schnittkurve \mathcal{E} von [F] mit der (x,y)-Ebene. Geben Sie Kurvenart und Bestimmungsstücke von \mathcal{E} an. Ermitteln Sie die Schnittkurve \mathcal{P} von [F] mit der Ebene x=3. Geben Sie Kurvenart und Scheitel von \mathcal{P} an.

b) Stellen Sie eine Gleichung der Tangentialebene τ von [F] im Punkt T(2, 1, 5) auf. Welche besondere Lage hat τ ?

c) In welchem Punkt E von [F] nimmt z ein Extremum an? Begründen Sie durch Rechnung, ob ein Maximum oder Minimum vorliegt.

5. Ermitteln Sie die allgemeine Lösung der Differentialgleichung $y' - y^2 - y^2 \cdot \cos x = 0$.

6. a) Wie lautet die allgemeine Lösung der Differentialgleichung y'' + 8y' + 16y = 0?

b) Gegeben ist die Differentialgleichung $y'' + 4y' + 3y = e^{-x}$. $y_h = C_1 e^{-x} + C_2 e^{-3x}$ ist die allgemeine Lösung der dazugehörigen homogenen Differentialgleichung. Berechnen Sie eine besondere Lösung y_p der gegebenen Differentialgleichung.

7. Gegeben sind drei Punkte $P_i(x_i, y_i)$ der (x,y)-Ebene: $P_1(0, \alpha)$, $P_2(1, 0)$, $P_3(2, 1)$. Ermitteln Sie die Gleichung der Ausgleichsgeraden für die drei Punkte. Für welchen Wert von α nimmt die Fehlerquadratumme S den Wert 0 an?