FACHHOCHSCHULE MÜNCHEN

FACHBEREICH 03 FA

WS 02/03

DIPLOMVORPRÜFUNG IN MATHEMATIK I (LINEARE ALGEBRA) - FAHRZEUGTECHNIK -

Arbeitszeit:

90 Minuten

Hilfsmittel:

Formelsammlung, Skripten, Bücher, Taschenrechner ohne Matrizenalgebra

Aufgabensteller:

Gröger, Kloster, Plöchinger, Pöschl, Stiefenhofer

!! WICHTIG: Alle Rechnungen und Ergebnisse auf diesem Arbeitsblatt eintragen !! Das Ergebnis allein zählt nicht. Der Rechenweg muß erkennbar sein !!

Name:	GebDatum:	Punkte:		
Vorname:	StudGruppe:	Korr.:		
Raum/Platz-Nr.:	Aufsicht:	Note:		

Aufgabe 1: Berechnen Sie zu
$$A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ -1 & 3 \end{pmatrix}$ und $C = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$
a) $2A - B^T =$

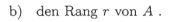
b)
$$A \cdot B =$$

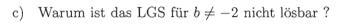
c)
$$C \cdot C^T =$$

d)
$$C^T \cdot C =$$

Aufgabe 2: Das LGS
$$A \cdot \vec{x} = \vec{b}$$
 habe die Koeffizientenmatrix $A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 2 & 1 & 2 & 1 \\ -1 & -2 & 2 & -5 \end{pmatrix}$ und den Vektor $\vec{b} = \begin{pmatrix} 0 \\ 1 \\ b \end{pmatrix}$ mit einem Parameter b . Ermitteln Sie

						→
a)	eine Zeilenstufenform	der	erweiterten	Koeffizientenmatrix	(A	b),





d) Berechnen Sie bei b=-2 die allgemeine Lösung \vec{x} in Vektorform.

Aufgabe 3: Berechnen Sie die Inverse
$$A^{-1}$$
 der Matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & -1 & 2 \end{pmatrix}$.

Aufgabe 4: Gegeben seien $A=\left(\begin{array}{cc} 3/2 & 1/2 \\ 1 & 1 \end{array}\right)$ sowie $\vec{p_1}=\left(\begin{array}{cc} 1 \\ 1 \end{array}\right)$ und $\vec{p_2}=\left(\begin{array}{cc} -1 \\ 2 \end{array}\right)$. Berechnen Sie

a) die Determinante det A und die Inverse A^{-1} ,

- b) die Bildvektoren $ec{q}_1 = A \cdot ec{p}_1$ und $ec{q}_2 = A \cdot ec{p}_2$.
- c) Zeichnen Sie Vektoren $\vec{p_1}$, $\vec{p_2}$, $\vec{q_1}$ und $\vec{q_2}$ in ein ebenes Koordinatensystem,

d) welche Eigenwerte und Eigenvektoren hat A? (ohne Rechnung, siehe Zeichnung)

Aufgabe 5: Gegeben sei die Matrix
$$A = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 3 \end{pmatrix}$$
.

a) Berechnen Sie das charakteristische Polynom $p(\lambda) = \det(A - \lambda E)$.

L \	7 oimon	C:	400	Λ	4:.	Eigenwerte λ		1		١	0 1-4
D.	Leigen	one,	aan	A	aie	Eigenwerte λ	1 =	1	una .	$\lambda_2 =$	z nat.

c) Berechnen Sie alle Eigenvektoren \vec{u} von A zum Eigenwert $\ \lambda_1$ und $\ \lambda_2$.