Analysis II: Übungsblatt Differential- und Integralrechnung für mehrere Veränderliche

- 1. Zeichnen Sie ein Höhenliniendiagramm für die Funktion $z=x^2-y^2$. (Linien für z_0 : -2, -1, 0, 1, 2).
- 2. Bilden Sie jeweils die geforderten Ableitungen
 - (a) $z = x^4 + \sin(xy) + 2x^3y^2$: 1. und 2. partielle Ableitungen
 - (b) $u = e^{xyz} : u_{xyz} = ?$
 - (c) $I_1 = I \frac{R_2}{R_1 + R_2}$: 1. partielle Ableitung nach R_1 und R_2
- 3. Die Widerstände $R_1=350\Omega$ (Genauigkeit $\pm 2\Omega$) und $R_2=100\Omega$ (Genauigkeit $\pm 1\Omega$) sind parallel geschaltet und dann noch mit R_2 in Reihe geschaltet.
 - (a) Wie groß ist der Ersatzwiderstand $R = \frac{R_1 \cdot R_2}{R_1 + R_2} + R_2$?
 - (b) Berechnen Sie die Genauigkeit (absoluter Fehler dR und relativer Fehler $\frac{dR}{R}$) des Ersatzwiderstandes mit Hilfe des totalem Differentials.
- 4. Welche Steigung hat die implizit gegebene Kurve $x^3 3x^2 + 4y^2 4 = 0$ im Punkt P(0,y)?
- 5. Berechnung von Extremwerten und Sattelpunkten
 - (a) Bestimmen Sie die relativen Extremwerte/Sattelpunkte der Funktion $z = xy 27(\frac{1}{x} \frac{1}{y}), x, y \neq 0.$
 - (b) Berechnen Sie die Extremwerte der Funktion z = x + y unter der Nebenbedingung $x^2 + y^2 = 1$.
- 6. Doppelintegrale:

(a)
$$\int_{x=0}^{1} \int_{y=1}^{e} \frac{x^2}{y} \, dy \, dx$$

(b)
$$\int_{x=0}^{3} \int_{y=0}^{1-x} (2xy - x^2) \, dy \, dx$$

- (c) Welchen Wert besitzt das Doppelintegral $I = \int_B \int \frac{y}{x} dB$, wenn B ein Achtelkreis mit Radius 1 ist (also $0 \le r \le 1, 0 \le \varphi \le \frac{\pi}{4}$)?
- 7. Dreifachintegrale:

(a)
$$\int_{x=0}^{\frac{\pi}{2}} \int_{y=0}^{1} \int_{z=y}^{y^2} yz \sin x \, dz \, dy \, dx$$

- (b) Berechnen Sie die Masse des Körpers B mit folgenden Grenzen: $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 2 x y$. Die Dichtefunktion lautet: $\rho(x, y, z) = x + y$.
- 8. Gegeben ist die Funktion

$$z = 8 - \frac{x^2}{2} - \frac{y^2}{4}$$
 mit $0 \le x \le 2$ und $0 \le y \le 4$

(a) Skizzieren Sie die Fläche im x,y,z-Diagramm (x-Achse nach SW, $l_x=\sqrt{2}$ (= 2 diagonale Kästchen) $l_y=1,\,l_z=1$) mithilfe folgender Wertetabelle:

$y \setminus x$	0	1	2
0			
2			
4			

- (b) Wie lautet die Schnittkurve mit der (y,z)-Ebene? Um was für eine Kurve handelt es sich?
- (c) Berechnen Sie das Volumen unter dieser Fläche im 1. Oktanten.
- (d) Berstimmen Sie die Tangentialebene im Punkt P=(1;2;6,5).
- (e) Berechnen Sie die Extremwerte.

Analysis II: LÖSUNGEN: Differential- und Integralrechnung für mehrere Veränderliche

- 1. Höhenliniendiagramm: $z_0 = x^2 y^2$. Es ergeben sich Hyperbeln (für $z_0 = 0$ Geraden).
- 2. Ableitungen

(a)
$$z_x = 4x^3 + \cos(xy)y + 6x^2y^2$$
, $z_y = \cos(xy)x + 4x^3y$, $z_{xx} = 12x^2 - \sin(xy)y^2 + 12xy^2$, $z_{yy} = -\sin(xy)x^2 + 4x^3$, $z_{xy} = -\sin(xy)xy + \cos(xy) + 12x^2y$

(b)
$$u_{xyz} = e^{xyz}(1 + 3xyz + x^2y^2z^2)$$

(c)
$$\frac{\partial I_1}{\partial R_1} = -I \frac{R_2}{(R_1 + R_2)^2}, \quad \frac{\partial I_1}{\partial R_2} = I \frac{R_1}{(R_1 + R_2)^2}$$

- 3. Totales Differential
 - (a) $R = 177, 8\Omega$
 - (b) $dR = \pm 1,704\Omega, \frac{dR}{R} = 0,96\%$
- 4. $P(0;1) \implies \text{Steigung}=0$
- 5. Berechnung von Extremwerten und Sattelpunkten
 - (a) Max=(3,-3,-27)
 - (b) $\text{Max} = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \sqrt{2}), \text{Min} = (\frac{-\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, -\sqrt{2}),$
- 6. Doppelintegrale:

(a)
$$\int_{x=0}^{1} \int_{y=1}^{e} \frac{x^2}{y} \, dy \, dx = \frac{1}{3}$$

(b)
$$\int_{x=0}^{3} \int_{y=0}^{1-x} (2xy - x^2) \, dy \, dx = 18$$

(c)
$$I = \int_{B} \int \frac{y}{x} dB = \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \frac{r \sin \varphi}{r \cos \varphi} r dr d\varphi = 0,17$$

7. Dreifachintegrale:

(a)
$$\int_{x=0}^{\frac{\pi}{2}} \int_{y=0}^{1} \int_{z=y}^{y^2} yz \sin x \, dz \, dy \, dx = -\frac{1}{24}$$

(b)
$$m = \int \int_{B} \int \rho(x, y, z) dB = \int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{2-x-y} (x+y) dz dy dx = \frac{5}{6}$$

8. Gegeben ist die Funktion

$$z = 8 - \frac{x^2}{2} - \frac{y^2}{4}$$
 mit $0 \le x \le 2$ und $0 \le y \le 4$

	$y \setminus x$	0	1	2
(2)	0	8	7,5	6
(a)	2	7	6,5	5
	4	4	3,5	2

- (b) $x = 0 \implies z = 8 \frac{y^2}{4}$, nach unten geöffnete gestauchte Parabel mit z-Achsenabschnitt 8.
- (c) V=48
- (d) x + y + z = 9,5
- (e) Maximum bei Max (0,0,8)